Age-related pacemaker deterioration is due to impaired intracellular and membrane mechanisms: Insights from numerical modeling
نویسندگان
چکیده
Age-related deterioration of pacemaker function has been documented in mammals, including humans. In aged isolated sinoatrial node tissues and cells, reduction in the spontaneous action potential (AP) firing rate was associated with deterioration of intracellular and membrane mechanisms; however, their relative contribution to age-associated deficient pacemaker function is not known. Interestingly, pharmacological interventions that increase posttranslation modification signaling activities can restore the basal and maximal AP firing rate, but the identities of the protein targets responsible for AP firing rate restoration are not known. Here, we developed a numerical model that simulates the function of a single mouse pacemaker cell. In addition to describing membrane and intracellular mechanisms, the model includes descriptions of autonomic receptor activation pathways and posttranslation modification signaling cascades. The numerical model shows that age-related deterioration of pacemaker function is related to impaired intracellular and membrane mechanisms: HCN4, T-type channels, and phospholamban functions, as well as the node connecting these mechanisms, i.e., intracellular Ca2+ and posttranslation modification signaling. To explain the restored maximal beating rate in response to maximal phosphodiesterase (PDE) inhibition, autonomic receptor stimulation, or infused cyclic adenosine monophosphate (cAMP), the model predicts that phospholamban phosphorylation by protein kinase A (PKA) and HCN4 sensitivity to cAMP are altered in advanced age. Moreover, alteration in PKA and cAMP sensitivity can also explain age-reduced sensitivity to PDE inhibition and autonomic receptor stimulation. Finally, the numerical model suggests two pharmacological approaches and one gene manipulation method to restore the basal beating rate of aged pacemaker cells to that of normal adult cells. In conclusion, our numerical model shows that impaired membrane and intracellular mechanisms and the nodes that couple them can lead to deteriorated pacemaker function. By increasing posttranslation modification signaling, the deteriorated basal and maximal age-associated beating rate can be restored to adult levels.
منابع مشابه
Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method
One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...
متن کاملRetailer’s replenishment and pricing decisions for non-instantaneous deterioration and price-dependent demand
Abstract In this research, an integrated inventory model for non-instantaneous deteriorating items is analyzed when demand is sensitive to changes in price. The price used in this research is a time-dependent function of the initial selling price and the discount rate. To control the deterioration rate of items at the storage...
متن کاملNumerical Modelling of Porous Radiant Burners Using Full and Reduced Kinetics Mechanisms
The present paper compares full kinetics mechanisms in numerical modelling of porous radiant burners (PRB), with their reduced forms. The two most frequently used mechanisms of methane combustion (GRI3.0 and Miller) were selected and their effects were examined on temperature, species concentration, burning speed, and pollutant emission. While the findings of numerical simulation of PRB sho...
متن کاملModeling of Self-Healing Concrete: A Review
Self-healing concrete (SHC) has received a tremendous attention due to its advanced ability of automatic crack detection and crack repairing compared to the standard concrete. Two main approaches which considered as to-date self-healing mechanisms are autogenous and autonomous healing. In the past several years, the effort of the research has been focused on experimental works instead of numeri...
متن کاملNumerical Modeling Calcium and CaMKII Effects in the SA Node
Sinoatrial node (SAN) is the primary heart pacemaker which initiates each heartbeat under normal conditions. Numerous experimental data have demonstrated that Ca(2+-) and CaMKII-dependent processes are crucially important for regulation of SAN cells. However, specific mechanisms of this regulation and their relative contribution to pacemaker function remain mainly unknown. Our review summarizes...
متن کامل